Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mar Drugs ; 22(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393023

RESUMO

Mycalin A (MA) is a polybrominated C-15 acetogenin isolated from the marine sponge Mycale rotalis. Since this substance displays a strong antiproliferative bioactivity towards some tumour cells, we have now directed our studies towards the elucidation of the MA interactome through functional proteomic approaches, (DARTS and t-LIP-MS). DARTS experiments were performed on Hela cell lysates with the purpose of identifying MA main target protein(s); t-LiP-MS was then applied for an in-depth investigation of the MA-target protein interaction. Both these techniques exploit limited proteolysis coupled with MS analysis. To corroborate LiP data, molecular docking studies were performed on the complexes. Finally, biological and SPR analysis were conducted to explore the effect of the binding. Mortalin (GRP75) was identified as the MA's main interactor. This protein belongs to the Hsp70 family and has garnered significant attention due to its involvement in certain forms of cancer. Specifically, its overexpression in cancer cells appears to hinder the pro-apoptotic function of p53, one of its client proteins, because it becomes sequestered in the cytoplasm. Our research, therefore, has been focused on the possibility that MA might prevent this sequestration, promoting the re-localization of p53 to the nucleus and facilitating the apoptosis of tumor cells.


Assuntos
Acetogeninas , Proteínas de Choque Térmico HSP70 , Poríferos , Animais , Humanos , Acetogeninas/farmacologia , Poríferos/metabolismo , Simulação de Acoplamento Molecular , Células HeLa , Proteômica , Proteína Supressora de Tumor p53/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762571

RESUMO

Effective therapy against the influenza virus is still an unmet goal. Drugs with antiviral effects exist, but the appearance of resistant viruses pushes towards the discovery of drugs with different mechanisms of action. New anti-influenza molecules should target a good candidate, as a new anti-influenza molecule could be an inhibitor of the influenza A virus hemagglutinin (HA), which plays a key role during the early phases of infection. In previous work, we identified two tetrapeptide sequences, SLDC (1) and SKHS (2), derived from bovine lactoferrin (bLf) C-lobe fragment 418-429, which were able to bind HA and inhibit cell infection at picomolar concentration. Considering the above, the aim of this study was to synthesize a new library of peptidomimetics active against the influenza virus. In order to test their ability to bind HA, we carried out a preliminary screening using biophysical assays such as surface plasmon resonance (SPR) and orthogonal immobilization-free microscale thermophoresis (MST). Biological and computational studies on the most interesting compounds were carried out. The methods applied allowed for the identification of a N-methyl peptide, S(N-Me)LDC, which, through high affinity binding of influenza virus hemagglutinin, was able to inhibit virus-induced hemagglutination and cell infection at picomolar concentration. This small sequence, with high activity, represents a good starting point for the design of new peptidomimetics and small molecules.


Assuntos
Vírus da Influenza A , Peptidomiméticos , Peptidomiméticos/farmacologia , Hemaglutininas , Antivirais/farmacologia , Bioensaio
3.
Pharmaceutics ; 15(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376220

RESUMO

In recent years, peptides have gained more success as therapeutic compounds. Nowadays, the preferred method to obtain peptides is solid-phase peptide synthesis (SPPS), which does not respect the principles of green chemistry due to the large number of toxic reagents and solvents used. The aim of this work was to research and study an environmentally sustainable solvent able to replace dimethylformamide (DMF) in fluorenyl methoxycarbonyl (Fmoc) solid-phase peptide synthesis. Herein, we report the use of dipropyleneglycol dimethylether (DMM), a well-known green solvent with low human toxicity following oral, inhalant, and dermal exposure and that is easily biodegradable. Some tests were needed to evaluate its applicability to all the steps of SPPS, such as amino acid solubility, resin swelling, deprotection kinetics, and coupling tests. Once the best green protocol was established, it was applied to the synthesis of different length peptides to study some of the fundamental parameters of green chemistry, such as PMI (process mass intensity) and the recycling of solvent. It was revealed that DMM is a valuable alternative to DMF in all steps of solid-phase peptide synthesis.

4.
Eur J Med Chem ; 244: 114857, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332548

RESUMO

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animais , Humanos , Proteases 3C de Coronavírus , Células Vero , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
5.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232735

RESUMO

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Neuraminidase , Peptídeos/farmacologia , Peptídeos/uso terapêutico
6.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628409

RESUMO

Coronaviruses, including SARS-CoV-2 (the etiological agent of the current COVID-19 pandemic), rely on the surface spike glycoprotein to access the host cells, mainly through the interaction of their receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2). Therefore, molecular entities able to interfere with the binding of the SARS-CoV-2 spike protein to ACE2 have great potential to inhibit viral entry. Starting from the available structural data on the interaction between SARS-CoV-2 spike protein and the host ACE2 receptor, we engineered a set of soluble and stable spike interactors, here denoted as S-plugs. Starting from the prototype S-plug, we adopted a computational approach by combining stability prediction, associated to single-point mutations, with molecular dynamics to enhance both S-plug thermostability and binding affinity to the spike protein. The best developed molecule, S-plug3, possesses a highly stable α-helical con-formation (with melting temperature Tm of 54 °C) and can interact with the spike RBD and S1 domains with similar low nanomolar affinities. Importantly, S-plug3 exposes the spike RBD to almost the same interface as the human ACE2 receptor, aimed at the recognition of all ACE2-accessing coronaviruses. Consistently, S-plug3 preserves a low nanomolar dissociation constant with the delta B.1.617.2 variant of SARS-CoV-2 spike protein (KD = 29.2 ± 0.6 nM). Taken together, we provide valid starting data for the development of therapeutical and diagnostic tools against coronaviruses accessing through ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/química
8.
Front Mol Biosci ; 8: 715263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901149

RESUMO

The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. On the basis of genetic evidence, it has been postulated that the FHIT protein may function as tumor suppressor, implying a role for the FHIT protein in carcinogenesis. Recently, Gaudio et al. reported that FHIT binds and delocalizes annexin A4 (ANXA4) from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. They also identified the smallest protein sequence of the FHIT still interacting with ANXA4, ranging from position 7 to 13: QHLIKPS. This short sequence of FHIT protein was not only able to bind ANXA4 but also to hold its target in the cytosol during paclitaxel treatment, thus avoiding ANXA4 translocation to the inner side of the cell membrane. Starting from these results, to obtain much information about structure requirements involved in the interaction of the peptide mentioned above, we synthetized a panel of seven peptides through an Ala-scan approach. In detail, to study the binding of FHIT derived peptides with ANXA4, we applied a combination of different biophysical techniques such as differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and microscale thermophoresis (MST). Circular dichroism (CD) and nuclear magnetic resonance (NMR) were used to determine the conformational structure of the lead peptide (7-13) and peptides generated from ala-scan technique. The application of different biophysical and structural techniques, integrated by a preliminary biological evaluation, allowed us to build a solid structure activity relationship on the synthesized peptides.

9.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34681184

RESUMO

Influenza is a highly contagious, acute respiratory illness, which represents one of the main health issues worldwide. Even though some antivirals are available, the alarming increase in virus strains resistant to them highlights the need to find new drugs. Previously, Superti et al. deeply investigated the mechanism of the anti-influenza virus effect of bovine lactoferrin (bLf) and the role of its tryptic fragments (the N- and C-lobes) in antiviral activity. Recently, through a truncation library, we identified the tetrapeptides, Ac-SKHS-NH2 (1) and Ac-SLDC-NH2 (2), derived from bLf C-lobe fragment 418-429, which were able to bind hemagglutinin (HA) and inhibit cell infection in a concentration range of femto- to picomolar. Starting from these results, in this work, we initiated a systematic SAR study on the peptides mentioned above, through an alanine scanning approach. We carried out binding affinity measurements by microscale thermophoresis (MST) and surface plasmon resonance (SPR), as well as hemagglutination inhibition (HI) and virus neutralization (NT) assays on synthesized peptides. Computational studies were performed to identify possible ligand-HA interactions. Results obtained led to the identification of an interesting peptide endowed with broad anti-influenza activity and able to inhibit viral infection to a greater extent of reference peptide.

10.
Eur J Med Chem ; 226: 113863, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571172

RESUMO

COVID-19 pandemic, starting from the latest 2019, and caused by SARS-CoV-2 pathogen, led to the hardest health-socio-economic disaster in the last century. Despite the tremendous scientific efforts, mainly focused on the development of vaccines, identification of potent and efficient anti-SARS-CoV-2 therapeutics still represents an unmet need. Remdesivir, an anti-Ebola drug selected from a repurposing campaign, is the only drug approved, so far, for the treatment of the infection. Nevertheless, WHO in later 2020 has recommended against its use in COVID-19. In the present paper, we describe a step-by-step in silico design of a small library of compounds as main protease (Mpro) inhibitors. All the molecules were screened by an enzymatic assay on Mpro and, then, cellular activity was evaluated using Vero cells viral infection model. The cellular screening disclosed compounds 29 and 34 as in-vitro SARS-CoV-2 replication inhibitors at non-toxic concentrations (0.32 < EC50 < 5.98 µM). To rationalize these results, additional in-vitro assays were performed, focusing on papain like protease (PLpro) and spike protein (SP) as potential targets for the synthesized molecules. This pharmacological workflow allowed the identification of compound 29, as a dual acting SARS-CoV-2 proteases inhibitor featuring micromolar inhibitory potency versus Mpro (IC50 = 1.72 µM) and submicromolar potency versus PLpro (IC50 = 0.67 µM), and of compound 34 as a selective SP inhibitor (IC50 = 3.26 µM).


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Chlorocebus aethiops , Simulação por Computador , SARS-CoV-2/enzimologia , Células Vero
11.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502335

RESUMO

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.


Assuntos
Antivirais/farmacologia , Simulação de Acoplamento Molecular , Oligopeptídeos/química , Peptídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Sítios de Ligação , COVID-19/virologia , Domínio Catalítico , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Reposicionamento de Medicamentos , Herpesvirus Humano 3/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Tratamento Farmacológico da COVID-19
12.
Cancers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256128

RESUMO

The involvement of GRK2 in cancer cell proliferation and its counter-regulation of p53 have been suggested in breast cancer even if the underlying mechanism has not yet been elucidated. Furthermore, the possibility to pharmacologically inhibit GRK2 to delay cancer cell proliferation has never been explored. We investigated this possibility by setting up a study that combined in vitro and in vivo models to underpin the crosstalk between GRK2 and p53. To reach this aim, we took advantage of the different expression of p53 in cell lines of thyroid cancer (BHT 101 expressing p53 and FRO cells, which are p53-null) in which we overexpressed or silenced GRK2. The pharmacological inhibition of GRK2 was achieved using the specific inhibitor KRX-C7. The in vivo study was performed in Balb/c nude mice, where we treated BHT-101 or FRO-derived tumors with KRX-C7. In our in vitro model, FRO cells were unaffected by GRK2 expression levels, whereas BHT-101 cells were sensitive, thus suggesting a role for p53. The regulation of p53 by GRK2 is due to phosphorylative events in Thr-55, which induce the degradation of p53. In BHT-101 cells, the pharmacologic inhibition of GRK2 by KRX-C7 increased p53 levels and activated apoptosis through the mitochondrial release of cytochrome c. These KRX-C7-mediated events were also confirmed in cancer allograft models in nude mice. In conclusion, our data showed that GRK2 counter-regulates p53 expression in cancer cells through a kinase-dependent activity. Our results further corroborate the anti-proliferative role of GRK2 inhibitors in p53-sensitive tumors and propose GRK2 as a therapeutic target in selected cancers.

13.
Hypertension ; 76(5): 1625-1636, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895019

RESUMO

Excessive BK (bradykinin) stimulation is responsible for the exaggerated permeabilization of the endothelium in angioedema. However, the molecular mechanisms underlying these responses have not been investigated. BK receptors are Gq-protein-coupled receptors phosphorylated by GRK2 (G protein-coupled receptor kinase 2) with a hitherto unknown biological and pathophysiological significance. In the present study, we sought to identify the functional role of GRK2 in angioedema through the regulation of BK signaling. We found that the accumulation of cytosolic Ca2+ in endothelial cells induced by BK was sensitive to GRK2 activity, as it was significantly augmented by inhibiting the kinase. Accordingly, permeabilization and NO production induced by BK were enhanced, as well. In vivo, mice with reduced GRK2 levels in the endothelium (Tie2-CRE/GRK2fl+/fl-) exhibited an increased response to BK in terms of vascular permeability and extravasation. Finally, patients with reduced GRK2 levels displayed a severe phenotype of angioedema. Taken together, these findings establish GRK2 as a novel pivotal regulator of BK signaling with an essential role in the pathophysiology of vascular permeability and angioedema.


Assuntos
Angioedema/metabolismo , Bradicinina/farmacologia , Endotélio Vascular/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Animais , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Humanos , Camundongos , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Pharmaceutics ; 12(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756470

RESUMO

Among enhancing strategies proposed in ocular drug delivery, a rising interest is directed to cell penetrating peptides (CPPs), amino acid short sequences primarily known for their intrinsic ability to cell internalization and, by extension, to cross biological barriers. In fact, CPPs may be considered as carrier for delivering therapeutic agents across biological membranes, including ocular tissues. Several CPPs have been proposed in ophthalmic delivery, and, among them, penetratin (PNT), a 16-amino acids natural peptide, stands out. Therefore, we describe the synthesis via the mimotopic approach of short fluorescently labeled analogues of both PNT and its reversed sequence PNT-R. Their ability to cross ocular membranes was checked ex vivo using freshly explanted porcine cornea. Furthermore, some sequences were studied by circular dichroism. Despite the hydrophilic nature and the relatively high molecular weight (approx. 1.6 kDa), all analogues showed a not negligible trans-corneal diffusion, indicating a partial preservation of penetration activity, even if no sequences reached the noteworthy ability of PNT. It was not possible to find a correlation between structure and corneal penetration ability, and further studies, exploring peptides distribution within corneal layers, for example using imaging techniques, deserve to be performed to figure out a possible difference in intracellular delivery.

15.
ESC Heart Fail ; 7(4): 1571-1584, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352228

RESUMO

AIMS: The effects of GRK2 inhibition on myocardial metabolism in heart failure (HF) are unchartered. In this work, we evaluated the impact of pharmacological inhibition of GRK2 by a cyclic peptide, C7, on metabolic, biochemical, and functional phenotypes in experimental HF. METHODS AND RESULTS: C7 was initially tested on adult mice ventricular myocyte from wild type and GRK2 myocardial deficient mice (GRK2-cKO), to assess the selectivity on GRK2 inhibition. Then, chronic infusion of 2 mg/kg/day of C7 was performed in HF mice with cryogenic myocardial infarction. Cardiac function in vivo was assessed by echocardiography and cardiac catheterization. Histological, biochemical, and metabolic studies were performed on heart samples at time points. C7 induces a significant increase of contractility in wild type but not in adult ventricle myocytes from GRK2-cKO mice, thus confirming C7 selectivity for GRK2. In HF mice, 4 weeks of treatment with C7 improved metabolic features, including mitochondrial organization and function, and restored the biochemical and contractile responses. CONCLUSIONS: GRK2 is a critical molecule in the physiological regulation of cardiac metabolism. Its alterations in the failing heart can be pharmacologically targeted, leading to the correction of metabolic and functional abnormalities observed in HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Quinase 2 de Receptor Acoplado a Proteína G , Insuficiência Cardíaca/tratamento farmacológico , Camundongos , Miocárdio , Miócitos Cardíacos
16.
Front Chem ; 8: 628609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520943

RESUMO

The most severe outcome of COVID-19 infection is the development of interstitial pneumonia causing acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS), both responsible for the infected patients' mortality. ALI and ARDS are characterized by a leakage of plasma components into the lungs, compromising their ability to expand and optimally engage in gas exchange with blood, resulting in respiratory failure. We have previously reported that zonulin, a protein dictating epithelial and endothelial permeability in several districts, including the airways, is involved in ALI pathogenesis in mouse models, and that its peptide inhibitor Larazotide acetate (also called AT1001) ameliorated ALI and subsequent mortality by decreasing mucosal permeability to fluid and extravasation of neutrophils into the lungs. With the recent crystallographic resolution of the SARS-CoV-2 main protease (Mpro), an enzyme fundamental in the viral lifecycle, bound to peptidomimetic inhibitors N3 and 13b, we were able to perform molecular modeling investigation showing that AT1001 presents structural motifs similar to co-crystallized ligands. Specifically, molecular docking, MM-GBSA-based predictions and molecular dynamics showed that AT1001 docks extremely well in the Mpro catalytic domain through a global turn conformational arrangement without any unfavorable steric hindrance. Finally, we have observed that AT1001 can be superimposed onto the crystallized structures of N3 and 13b, establishing a higher number of interactions and accordingly a tighter binding. In vitro studies confirmed AT1001 anti-Mpro and preliminary investigation indicted an anti-viral activity. Combined, these studies suggest that AT1001, besides its well-demonstrated effect in ameliorating mucosal permeability in ALI/ARDS, may also exert a direct anti-SARS-CoV-2 effect by blocking the Mpro. AT1001 has been used extensively in a variety of animal models of ALI demonstrating robust safety and efficacy; it is currently in phase 3 trials in celiac subjects showing strong safety and efficacy profiles. We therefore propose its use as a specific anti-SARS-CoV-2 multitargeting treatment for the current pandemic.

17.
Oxid Med Cell Longev ; 2019: 1616239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814866

RESUMO

Peptides derived from buffalo dairy products possess multiple healthy properties that cannot be exerted as long as they are encrypted in parent proteins. To evaluate the biological activities of encrypted peptide sequences from buffalo ricotta cheese, we performed a simulated gastrointestinal (GI) digestion. Chemical and pharmacological characterization of the digest led to the identification of a novel peptide endowed with antioxidant and antihypertensive action. The GI digest was fractionated by Semiprep-HPLC, and fractions were tested against reactive oxygen species (ROS) release in an H2O2-treated intestinal epithelial cell line. UHPLC-PDA-MS/MS analysis revealed the presence of an abundant ß-lactoglobulin peptide (BRP2) in the most active fraction. Pharmacological characterization of BRP2 highlighted its antioxidant activity, involving ROS reduction, nuclear factor erythroid 2-related factor 2 (Nrf2) activation, and cytoprotective enzyme expression. The bioavailability of BRP2 was evaluated in intestinal transport studies through a Caco-2 cell monolayer. Equal bidirectional transport and linear permeability indicate that BRP2 was absorbed mainly through passive diffusion. In addition to its local effects, the BRP2 administration on mouse mesenteric arteries was able to reduce the angiotensin II-induced vasoconstriction by the Nrf2 nuclear translocation, the reduction of the active form of Ras-related C3 botulinum toxin substrate 1 (Rac1), and the NADPH oxidase activity. These data further highlight the role of buffalo ricotta cheese-derived peptides against oxidative stress-related diseases and suggest their health-promoting potential.


Assuntos
Angiotensina II/metabolismo , Células Epiteliais/metabolismo , Lactoglobulinas/farmacologia , Artérias Mesentéricas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Antioxidantes/farmacologia , Células CACO-2 , Células Epiteliais/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Vasoconstrição/efeitos dos fármacos
18.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934608

RESUMO

Despite the availability of several therapies for the management of blood glucose in diabetic patients, most of the treatments do not show benefits on diabetic cardiomyopathy, while others even favor the progression of the disease. New pharmacological targets are needed that might help the management of diabetes and its cardiovascular complications at the same time. GRK2 appears a promising target, given its established role in insulin resistance and in systolic heart failure. Using a custom peptide inhibitor of GRK2, we assessed in vitro in L6 myoblasts the effects of GRK2 inhibition on glucose extraction and insulin signaling. Afterwards, we treated diabetic male mice (db/db) for 2 weeks. Glucose tolerance (IGTT) and insulin sensitivity (ITT) were ameliorated, as was skeletal muscle glucose uptake and insulin signaling. In the heart, at the same time, the GRK2 inhibitor ameliorated inflammatory and cytokine responses, reduced oxidative stress, and corrected patterns of fetal gene expression, typical of diabetic cardiomyopathy. GRK2 inhibition represents a promising therapeutic target for diabetes and its cardiovascular complications.


Assuntos
Cardiotônicos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Hipoglicemiantes/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Transporte Biológico/efeitos dos fármacos , Cardiomegalia/complicações , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Cardiotônicos/farmacologia , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Inflamação/patologia , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
19.
ACS Med Chem Lett ; 10(4): 601-605, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996803

RESUMO

JMJD3 is a member of the KDM6 subfamily and catalyzes the demethylation of lysine 27 on histone H3 (H3K27). This protein was identified as a useful tool in understanding the role of epigenetics in inflammatory conditions and in cancer as well. Guided by a virtual fragment screening approach, we identified the benzoxazole scaffold as a new hit suitable for the development of tighter JMJD3 inhibitors. Compounds were synthesized by a microwave-assisted one-pot reaction under catalyst and solvent-free conditions. Among these, compound 8 presented the highest inhibitory activity (IC50 = 1.22 ± 0.22 µM) in accordance with molecular modeling calculations. Moreover, 8 induced the cycle arrest in S-phase on A375 melanoma cells.

20.
Hypertension ; 73(2): 449-457, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30595120

RESUMO

Considered as a superfood of the future, Spirulina platensis matrix has been extensively used because of its beneficial effect on the management of cardiovascular diseases. However, its nutraceutical properties, bioactive compounds, and molecular mechanisms are unknown. Here, we demonstrate that S platensis matrix processed in vitro by simulated gastrointestinal digestion induces direct endothelial nitric oxide (NO)-mediated vasorelaxation of resistance vessels in mice. To gain insight into the bioactive compounds responsible for this effect, we used a complex multistep peptidomic approach to fractionate the crude digest: of the 5 peptide fractions identified (A-E), only fraction E evoked vasorelaxation. High-resolution mass spectrometry-based screening revealed in E the presence of 4 main peptides (SP3-SP6 [spirulina peptides]), of which only SP6 (GIVAGDVTPI) exerted direct endothelium-dependent vasodilation of ex vivo vessels, an effect occurring via a PI3K (phosphoinositide-3-kinase)/AKT (serine/threonine kinase Akt) pathway converging on NO release. In vivo, administration of SP6 evoked a significant hemodynamic effect, reducing blood pressure, an action absent in eNOS (endothelial NO synthase)-deficient mice. Of note, although lower doses of SP6 had no hemodynamic effects, it still enhanced endothelial NO vasorelaxation. Finally, in an experimental model of arterial hypertension, SP6 exerted an antihypertensive effect, improving endothelial vasorelaxation associated with enhanced serum nitrite levels. Based on our results, this novel decameric peptide may extend the possible fields of application for spirulina-derived peptides and could be developed into a promising nonpharmacological approach for the containment of pathologies associated with vascular NO misregulation.


Assuntos
Proteínas de Bactérias/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/fisiologia , Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Spirulina/química , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Camundongos , Óxido Nítrico/fisiologia , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...